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Introduction

 Research interests
 Recommender Systems

 E-Commerce applications, business value of 
recommenders

 Interactive advisory systems

 Artificial Intelligence
 Model-based Diagnosis, Constraints

 Software Engineering
 Debugging of Spreadsheets

 Drives this research (assuming a few cores)

 MBD for spreadsheets can be challenging
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Model-based Diagnosis (MBD)

 A subfield of Artificial Intelligence

 Concerned with the automated and principled 
analysis of why a system under observation does 
not work as expected

 Based on an explicit model of a system’s behavior 
when all of its components work correctly

 Originally designed for diagnosis of hardware 
circuits

 But applied in many other domains later on, in 
particular to software specifications:

 Knowledge-base debugging, diagnosis of workflow 
definitions, VHDL and Java code, ontologies and 
description logics, spreadsheets
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General Principle of MBD

 Detect and analyze the behavioral discrepancy

 Systematically test hypothesis about possible 
reasons for the discrepancy
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Diagnosing Electronic Circuits

 Given the inputs and observed outputs below, 
some components must be at fault

 The goal is to find possible (and parsimonious) 
explanations for the observed outputs
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Diagnosing Electronic Circuits

 Assuming “everything is broken” is one possible 
explanation (diagnosis)

 But we are interested in minimal diagnosis

 A diagnosis is a subset of the system’s components 
which, if assumed faulty, explain (or: are logically 
consistent with) the observations
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Diagnosis Algorithms

 A brute force algorithm
 Test all hypothesis regarding the 

(two) possible states of each 
components

 Means testing 2n combinations given 
n components to find all explanations

 Each test involves a “simulation” of the system

 Reiter’s HS-Tree algorithm
 Based on the concept of “conflicts”

 Subsets of the components which cannot be assumed to 
work correctly

 Conflicts guide the construction of a search tree
 Prunes the search space significantly
 Creates the diagnoses with increasing cardinality
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Reiter’s HS-Tree Algorithm
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 Example

 Conflicts:

 Not known in advance

 {C1, C2, C3}

 {C2, C4}
{C1, C2, C3}

C1
C2

C3

{C2, C4} {C2, C4}
C2 C4

C2 C4

 Diagnoses:
 {C2}
 {C1, C4}
 {C3, C4}



Reiter’s Problem Formalization

 Sets SD, COMPONENTS, OBS

 Can be encoded as sets of logical sentences

 Diagnosis problem: observation o ∈ OBS deviates 
from expected system behavior

 Find diagnoses Δ ⊆ COMPONENTS that explain the 
systems behavior, if the components of Δ are 
assumed to be faulty

 Use HS-Tree algorithm to find minimal diagnoses

 Based on conflicts

 Conflict c ⊆ COMPONENTS is a set of components 
that, if assumed to behave normally, are not 
consistent with the observations
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Where’s the constraint reasoning?

1. In many proposals constraint reasoning is used to  
simulate the system behavior
 Own recent work – spreadsheet debugging

 Spreadsheets are translated into a CSP program

2. Alternative approach: “Direct Diagnosis”
 Don’t use conflicts but encode the fault states into 

the simulation model
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Computational Complexity

 Even if the conflicts were known in advance, the 
problem is hard
 Reiter shows that the computation of the diagnoses 

corresponds to the computation of the “hitting sets” 
(cover set) of the conflict sets

 Which is known to be an NP-hard problem

 Computing one additional node in the pruned search 
tree is costly as well
 It can involve solving a given Constraint Satisfaction 

Problem multiple times

 Our main proposal therefore
 Parallelize Reiter’s tree search algorithm (and thus 

implicitly the constraint reasoning process) 

 For some reason nobody thought of this

 No parallel search in one CSP but many 
parallel CSPs 11



Level-wise parallelization

 Construct nodes at one level in parallel

 Using thread pool of defined size

 Synchronize at end of each level

 Limited synchronization effort needed

 Sound and complete
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Full parallelization 

 Except root node, all nodes are processed in 
parallel

 More synchronization required

 Supersets of diagnoses can be found

 When a diagnosis is found, supersets of this 
diagnosis have to be removed

 Sound and complete
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Diagnoses:
{C1, C2} {C2} …



Empirical Evaluation

 Tested different algorithm configurations on a 
number of datasets

 DXC Benchmarks
 First 5 systems of 2011 DX Competition synthetic track, 

encoded as CSP problems

 CSPs
 Selected CSPs of 2008 CSP Solver Competition, selected 

CSP-encoded spreadsheets

 Ontologies
 Cannot be efficiently encoded as CSP problems

 Simulation
 Evaluation based on a systematic variation of problem 

characteristics
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DXC Benchmark

 DXC Synthetic Track

 Real-world logic circuits

 First 5 systems

 System specifies system description and components

 20 scenarios per system

 Scenario specifies observations

 Different faulty components resulting in different 
observations

 100 runs per scenario to factor out random effects

 5 x 20 x 100 x 3 = 30.000 runs
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DXC Benchmarks
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* limited the search depth to their actual number of faults to ensure termination within reasonable 
time frame



CSPs

 Different CSPs, different characteristics

 Some can be solved in milliseconds

 Others need hours or days

 Find CSPs that are

 Different in their characteristics

 Can be solved in a reasonable time frame

 Not too simple

 Injected faults

 To remove solvability with respect to test cases

 Diagnosis task is to restore solvability
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CSPs

18



CSPs
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Simulation

 Test effects of different characteristics on 
parallelization improvements

 Simulation

 Artificial problem settings

 Defined problem characteristics

 Randomly created problem instances

 Whenever a new conflict should be determined, 
system actively waits some time (Wt) and randomly 
returns one of the conflicts
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Simulation Results

 Quite small diagnosis problem

 Wt = 0 shows time for tree construction itself

 Synchronization overhead of Full Parallelization
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More Simulation Results

 Other results

 Larger conflicts → broader HS-Trees → better 
parallelization

 More components → higher problem complexity →
narrower HS-Trees up to a certain level → smaller 
parallelization improvements

 Adding more threads → even higher improvements, 
but efficiency decreases
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Computing multiple conflicts at once

 When constructing a new node, exactly one minimal 
conflict is computed

 Pro:
 The new conflict is quickly visible and can be used by 

parallel threads

 Con:
 Conflict search is re-started for each node

 Approach:
 New method (MergeXPlain) to compute more than one 

conflict, in case they exist

 Effect:
 Slightly more effort for first nodes, but higher re-use 

levels later on

23

Shchekotykhin, K., Jannach, D. and Schmitz, T.: "MergeXplain: Fast Computation of Multiple 
Conflicts for Diagnosis". In: IJCAI 2015. Buenos Aires, Argentina, 2015, pp. 3221-3228



Evaluation

 Different technical implementations possible

 Compute all conflicts and then return

 Return to main thread after first conflict is found

 And compute more in a new background thread

 Results (MergeXPlain combined with 
parallelization)
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Parallelizing Depth-First Search

 Parallelizing a DFS procedure to find one diagnosis

 Go down the tree in a random manner in parallel 
threads

 Remove redundant elements once a diagnosis is 
found
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A Hybrid DFS/BFS Strategy

 Which strategy works best depends on the specific 
problem setting
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Results DFS/BFS Strategy

 Electronic circuits as an example

 Randomized DFS-strategy works better 
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Direct Encodings

 Assume a CSP with variables: a1, a2, b1, b2, c1

 Constraints are as follows

 X1 : b1 = a1 * 2; X2 : b2 = a2 * 3; X3 : c1 = b1 x b2

 But X3 should have been: c1 = b1 + b2

 In a direct encoding, we add health state variables 
for each constraint (the constraints are the 
components), i.e., ab1, ab2, ab3

 Updated constraints are

 X1: ab1 v (b1 = a1 * 2); X2: ab2 v (b2  a2 * 3); 
X3: ab3 v (c1 = b1 * b2)

 Add: ab1 + ab2 + ab3 = 1
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Direct Encodings

 Very fast at finding one diagnosis

 All diagnosis can be obtained by incrementing the 
expected diagnosis size stepwise

 Using parallel constraint reasoning implementation 
of Gecode solver
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Direct Encoding Results

 Finding one or all diagnosis

 Parallelization in both cases starts paying off for 
more complex problems

 Might be even better if specifics of the solver are 
taken into account
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Summary

 Model-based Diagnosis as a general fault 
detection/isolation method

 Based on a simulation of the system to be 
examined

 Simulation (or problem itself) often a CSP

 Our work shows that parallelizing the diagnostic 
process leads to significant performance 
improvements

 Multiple CSP problems solved in parallel

 Parallelizing direct encodings also leads to 
performance gains
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Thank you for your attention

Contact: dietmar.jannach@tu-dortmund.de
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HS-Tree algorithm
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Expansion logic
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Level-wise Parallelization
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Full parallelization
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Full-parallelization node expansion
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