
Parallel Model-based Diagnosis
on Multi-Core Computers

Dietmar Jannach
TU Dortmund, Germany

dietmar.jannach@tu-dortmund.de

Invited Talk at PCR workshop at CADE 2017

Introduction

 Research interests
 Recommender Systems

 E-Commerce applications, business value of
recommenders

 Interactive advisory systems

 Artificial Intelligence
 Model-based Diagnosis, Constraints

 Software Engineering
 Debugging of Spreadsheets

 Drives this research (assuming a few cores)

 MBD for spreadsheets can be challenging

2

Model-based Diagnosis (MBD)

 A subfield of Artificial Intelligence

 Concerned with the automated and principled
analysis of why a system under observation does
not work as expected

 Based on an explicit model of a system’s behavior
when all of its components work correctly

 Originally designed for diagnosis of hardware
circuits

 But applied in many other domains later on, in
particular to software specifications:

 Knowledge-base debugging, diagnosis of workflow
definitions, VHDL and Java code, ontologies and
description logics, spreadsheets

3

General Principle of MBD

 Detect and analyze the behavioral discrepancy

 Systematically test hypothesis about possible
reasons for the discrepancy

4

Diagnosing Electronic Circuits

 Given the inputs and observed outputs below,
some components must be at fault

 The goal is to find possible (and parsimonious)
explanations for the observed outputs

5

1
0

1

0

1

Diagnosing Electronic Circuits

 Assuming “everything is broken” is one possible
explanation (diagnosis)

 But we are interested in minimal diagnosis

 A diagnosis is a subset of the system’s components
which, if assumed faulty, explain (or: are logically
consistent with) the observations

6

1
0

1

0

1

Diagnosis Algorithms

 A brute force algorithm
 Test all hypothesis regarding the

(two) possible states of each
components

 Means testing 2n combinations given
n components to find all explanations

 Each test involves a “simulation” of the system

 Reiter’s HS-Tree algorithm
 Based on the concept of “conflicts”

 Subsets of the components which cannot be assumed to
work correctly

 Conflicts guide the construction of a search tree
 Prunes the search space significantly
 Creates the diagnoses with increasing cardinality

7

Reiter’s HS-Tree Algorithm

8

 Example

 Conflicts:

 Not known in advance

 {C1, C2, C3}

 {C2, C4}
{C1, C2, C3}

C1
C2

C3

{C2, C4} {C2, C4}
C2 C4

C2 C4

 Diagnoses:
 {C2}
 {C1, C4}
 {C3, C4}

Reiter’s Problem Formalization

 Sets SD, COMPONENTS, OBS

 Can be encoded as sets of logical sentences

 Diagnosis problem: observation o ∈ OBS deviates
from expected system behavior

 Find diagnoses Δ ⊆ COMPONENTS that explain the
systems behavior, if the components of Δ are
assumed to be faulty

 Use HS-Tree algorithm to find minimal diagnoses

 Based on conflicts

 Conflict c ⊆ COMPONENTS is a set of components
that, if assumed to behave normally, are not
consistent with the observations

9

Where’s the constraint reasoning?

1. In many proposals constraint reasoning is used to
simulate the system behavior
 Own recent work – spreadsheet debugging

 Spreadsheets are translated into a CSP program

2. Alternative approach: “Direct Diagnosis”
 Don’t use conflicts but encode the fault states into

the simulation model

10

 Jannach, D. and Schmitz, T.: "Model-based diagnosis of spreadsheet programs:
a constraint-based debugging approach". Automated Software Engineering,
Vol. 23(1). Springer Nature, 2014, pp. 105-144

Computational Complexity

 Even if the conflicts were known in advance, the
problem is hard
 Reiter shows that the computation of the diagnoses

corresponds to the computation of the “hitting sets”
(cover set) of the conflict sets

 Which is known to be an NP-hard problem

 Computing one additional node in the pruned search
tree is costly as well
 It can involve solving a given Constraint Satisfaction

Problem multiple times

 Our main proposal therefore
 Parallelize Reiter’s tree search algorithm (and thus

implicitly the constraint reasoning process)

 For some reason nobody thought of this

 No parallel search in one CSP but many
parallel CSPs 11

Level-wise parallelization

 Construct nodes at one level in parallel

 Using thread pool of defined size

 Synchronize at end of each level

 Limited synchronization effort needed

 Sound and complete

12

C2C1

C2 C1

Jannach, D., Schmitz, T. and Shchekotykhin, K.: "Parallel Model-Based Diagnosis on
Multi-Core Computers". Journal of Artificial Intelligence Research,
Vol. 55. AI Access Foundation, 2016, pp. 835-887

Full parallelization

 Except root node, all nodes are processed in
parallel

 More synchronization required

 Supersets of diagnoses can be found

 When a diagnosis is found, supersets of this
diagnosis have to be removed

 Sound and complete

13

C2C1

C2

Diagnoses:
{C1, C2} {C2} …

Empirical Evaluation

 Tested different algorithm configurations on a
number of datasets

 DXC Benchmarks
 First 5 systems of 2011 DX Competition synthetic track,

encoded as CSP problems

 CSPs
 Selected CSPs of 2008 CSP Solver Competition, selected

CSP-encoded spreadsheets

 Ontologies
 Cannot be efficiently encoded as CSP problems

 Simulation
 Evaluation based on a systematic variation of problem

characteristics

14

DXC Benchmark

 DXC Synthetic Track

 Real-world logic circuits

 First 5 systems

 System specifies system description and components

 20 scenarios per system

 Scenario specifies observations

 Different faulty components resulting in different
observations

 100 runs per scenario to factor out random effects

 5 x 20 x 100 x 3 = 30.000 runs

15

DXC Benchmarks

16

* limited the search depth to their actual number of faults to ensure termination within reasonable
time frame

CSPs

 Different CSPs, different characteristics

 Some can be solved in milliseconds

 Others need hours or days

 Find CSPs that are

 Different in their characteristics

 Can be solved in a reasonable time frame

 Not too simple

 Injected faults

 To remove solvability with respect to test cases

 Diagnosis task is to restore solvability

17

CSPs

18

CSPs

19

Simulation

 Test effects of different characteristics on
parallelization improvements

 Simulation

 Artificial problem settings

 Defined problem characteristics

 Randomly created problem instances

 Whenever a new conflict should be determined,
system actively waits some time (Wt) and randomly
returns one of the conflicts

20

Simulation Results

 Quite small diagnosis problem

 Wt = 0 shows time for tree construction itself

 Synchronization overhead of Full Parallelization

21

More Simulation Results

 Other results

 Larger conflicts → broader HS-Trees → better
parallelization

 More components → higher problem complexity →
narrower HS-Trees up to a certain level → smaller
parallelization improvements

 Adding more threads → even higher improvements,
but efficiency decreases

22

Computing multiple conflicts at once

 When constructing a new node, exactly one minimal
conflict is computed

 Pro:
 The new conflict is quickly visible and can be used by

parallel threads

 Con:
 Conflict search is re-started for each node

 Approach:
 New method (MergeXPlain) to compute more than one

conflict, in case they exist

 Effect:
 Slightly more effort for first nodes, but higher re-use

levels later on

23

Shchekotykhin, K., Jannach, D. and Schmitz, T.: "MergeXplain: Fast Computation of Multiple
Conflicts for Diagnosis". In: IJCAI 2015. Buenos Aires, Argentina, 2015, pp. 3221-3228

Evaluation

 Different technical implementations possible

 Compute all conflicts and then return

 Return to main thread after first conflict is found

 And compute more in a new background thread

 Results (MergeXPlain combined with
parallelization)

24

Parallelizing Depth-First Search

 Parallelizing a DFS procedure to find one diagnosis

 Go down the tree in a random manner in parallel
threads

 Remove redundant elements once a diagnosis is
found

25

A Hybrid DFS/BFS Strategy

 Which strategy works best depends on the specific
problem setting

26

Results DFS/BFS Strategy

 Electronic circuits as an example

 Randomized DFS-strategy works better

27

Direct Encodings

 Assume a CSP with variables: a1, a2, b1, b2, c1

 Constraints are as follows

 X1 : b1 = a1 * 2; X2 : b2 = a2 * 3; X3 : c1 = b1 x b2

 But X3 should have been: c1 = b1 + b2

 In a direct encoding, we add health state variables
for each constraint (the constraints are the
components), i.e., ab1, ab2, ab3

 Updated constraints are

 X1: ab1 v (b1 = a1 * 2); X2: ab2 v (b2 a2 * 3);
X3: ab3 v (c1 = b1 * b2)

 Add: ab1 + ab2 + ab3 = 1

28

Direct Encodings

 Very fast at finding one diagnosis

 All diagnosis can be obtained by incrementing the
expected diagnosis size stepwise

 Using parallel constraint reasoning implementation
of Gecode solver

29

Direct Encoding Results

 Finding one or all diagnosis

 Parallelization in both cases starts paying off for
more complex problems

 Might be even better if specifics of the solver are
taken into account

30

Summary

 Model-based Diagnosis as a general fault
detection/isolation method

 Based on a simulation of the system to be
examined

 Simulation (or problem itself) often a CSP

 Our work shows that parallelizing the diagnostic
process leads to significant performance
improvements

 Multiple CSP problems solved in parallel

 Parallelizing direct encodings also leads to
performance gains

31

Thank you for your attention

Contact: dietmar.jannach@tu-dortmund.de

32

References
 Jannach, D., Schmitz, T. and Shchekotykhin, K.: "Parallel

Model-Based Diagnosis on Multi-Core Computers". Journal
of Artificial Intelligence Research, Vol. 55. AI Access
Foundation, 2016, pp. 835-887

 Jannach, D. and Schmitz, T.: "Model-based diagnosis of
spreadsheet programs: a constraint-based debugging
approach". Automated Software Engineering, Vol. 23(1).
Springer Nature, 2014, pp. 105-144

 Shchekotykhin, K., Jannach, D. and Schmitz, T.:
"MergeXplain: Fast Computation of Multiple Conflicts for
Diagnosis". In: Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI 2015). Buenos
Aires, Argentina, 2015, pp. 3221-3228

 Jannach, D., Schmitz, T. and Shchekotykhin, K. M.:
"Parallelized Hitting Set Computation for Model-Based
Diagnosis". In: Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI 2015). Austin, Texas, USA, 2015,
pp. 1503-1510

33

HS-Tree algorithm

34

Expansion logic

35

Level-wise Parallelization

36

Full parallelization

37

Full-parallelization node expansion

38

	Parallel Model-based Diagnosis on Multi-Core Computers
	Introduction
	Model-based Diagnosis (MBD)
	General Principle of MBD
	Diagnosing Electronic Circuits
	Diagnosing Electronic Circuits
	Diagnosis Algorithms
	Reiter’s HS-Tree Algorithm
	Reiter’s Problem Formalization
	Where’s the constraint reasoning?
	Computational Complexity
	Level-wise parallelization
	Full parallelization
	Empirical Evaluation
	DXC Benchmark
	DXC Benchmarks
	CSPs
	CSPs
	CSPs
	Simulation
	Simulation Results
	More Simulation Results
	Computing multiple conflicts at once
	Evaluation
	Parallelizing Depth-First Search
	A Hybrid DFS/BFS Strategy
	Results DFS/BFS Strategy
	Direct Encodings
	Direct Encodings
	Direct Encoding Results
	Summary
	Foliennummer 32
	References
	HS-Tree algorithm
	Expansion logic
	Level-wise Parallelization
	Full parallelization
	Full-parallelization node expansion

