Parallel Model-based Diagnosis
on Multi-Core Computers

Dietmar Jannach
TU Dortmund, Germany
dietmar.jannach@tu-dortmund.de

Invited Talk at PCR workshop at CADE 2017

Introduction

» Research interests
» » Recommender Systems

» E-Commerce applications, business value of
recommenders

» Interactive advisory systems
» Artificial Intelligence
» » Model-based Diagnosis, Constraints
» » Software Engineering
» Debugging of Spreadsheets

» Drives this research (assuming a few cores)

» MBD for spreadsheets can be challenging

Model-based Diagnosis (MBD)

» A subfield of Artificial Intelligence

» Concerned with the automated and principled
analysis of why a system under observation does
not work as expected

» Based on an explicit model of a system’s behavior
when all of its components work correctly

» Originally designed for diagnosis of hardware
circuits

» But applied in many other domains later on, in
particular to software specifications:

» Knowledge-base debugging, diagnosis of workflow
definitions, VHDL and Java code, ontologies and
description logics, spreadsheets

General Principle of MBD

» Detect and analyze the behavioral discrepancy

» Systematically test hypothesis about possible
reasons for the discrepancy

STRUCTURAL

MODEL DISCREPANCY ARTIFACT
/N
N N/
PREDICTED BEHAVIORAL OBSERVED

BEHAVIOR _‘% DISCREPANCY < BEHAVIOR

Diagnosing Electronic Circuits

» Given the inputs and observed outputs below,
some components must be at fault

» The goal is to find possible (and parsimonious)
explanations for the observed outputs

6 T 1

l

1 i A2

—] N 01N
B D 0

Diagnosing Electronic Circuits

» Assuming “everything is broken” is one possible
explanation (diagnosis)

» But we are interested in minimal diagnosis

» A diagnosis is a subset of the system’s components
which, if assumed faulty, explain (or: are logically
consistent with) the observations

5 mx _—ﬁ)i?)t—‘l

l

1 = A2

) &

. Yo\

Diagnosis Algorithms

» A brute force algorithm

» Test all hypothesis regarding the
(two) possible states of each
components

» Means testing 2" combinations given
n components to find all explanations

» Each test involves a “simulation” of the system
» Reiter’s HS-Tree algorithm
» Based on the concept of “conflicts”

» Subsets of the components which cannot be assumed to
work correctly

» Conflicts guide the construction of a search tree
» Prunes the search space significantly
» Creates the diagnoses with increasing cardinality

Reiter’s HS-Tree Algorithm

» Example » Diagnoses:
» Conflicts: » {C2}
» Not known in advance » {C1, C4
»({c1] c2.[c3) » {C3, C4

»(1C2 C4}‘/ {Cl% c3)
Cl

C3

S * P
T i?%/

Reiter’s Problem Formalization

» Sets SD, COMPONENTS, OBS

» Can be encoded as sets of logical sentences

» Diagnosis problem: observation o € OBS deviates
from expected system behavior

» Find diagnoses A € COMPONENTS that explain the
systems behavior, if the components of A are
assumed to be faulty

» Use HS-Tree algorithm to find minimal diagnoses

» Based on conflicts

» Conflict c € COMPONENTS is a set of components
that, if assumed to behave normally, are not
consistent with the observations

Where’s the constraint reasoning?

1. In many proposals constraint reasoning is used to
simulate the system behavior

» Own recent work - spreadsheet debugging

4 A B € LA| Shouldbe
1 ? =A1*2 [=B1*B2 B1 + B2
2 ? =A2*3

p A B c /’ Expected 20
1 1 2 36 instead of 36
- 6 18

» Spreadsheets are translated into a CSP program

2. Alternative approach: “Direct Diagnosis™

» Don’t use conflicts but encode the fault states into
the simulation model

» Jannach, D. and Schmitz, T.: "Model-based diagnosis of spreadsheet programs:
a constraint-based debugging approach”. Automated Software Engineering,
Vol. 23(1). Springer Nature, 2014, pp. 105-144

Computational Complexity

» Even if the conflicts were known in advance, the
problem is hard

» Reiter shows that the computation of the diagnoses
corresponds to the computation of the “hitting sets”
(cover set) of the conflict sets

» Which is known to be an NP-hard problem

» Computing one additional node in the pruned search
tree is costly as well

» It can involve solving a given Constraint Satisfaction
Problem multiple times

» Our main proposal therefore

» Parallelize Reiter’s tree search algorithm (and thus
implicitly the constraint reasoning process)

» For some reason nobody thought of this

» No parallel search in one CSP but many
parallel CSPs

Level-wise parallelization

» Construct nodes at one level in parallel
» Using thread pool of defined size

» Synchronize at end of each level
» Limited synchronization effort needed

» Sound and complete

Cl C2

C2 C1

Jannach, D., Schmitz, T. and Shchekotykhin, K.: "Parallel Model-Based Diagnosis on
Multi-Core Computers”. Journal of Artificial Intelligence Research,
Vol. 55. Al Access Foundation, 2016, pp. 835-887

Full parallelization

» Except root node, all nodes are processed in
parallel

» More synchronization required
» Supersets of diagnoses can be found

» When a diagnosis is found, supersets of this
diagnosis have to be removed

» Sound and complete

Diagnoses: ClL 5

{Ba=C2HC2} ..

C2

Empirical Evaluation

» Tested different algorithm configurations on a
number of datasets

» DXC Benchmarks

» First 5 systems of 2011 DX Competition synthetic track,
encoded as CSP problems

» CSPs

» Selected CSPs of 2008 CSP Solver Competition, selected
CSP-encoded spreadsheets

» Ontologies
» Cannot be efficiently encoded as CSP problems
» Simulation

» Evaluation based on a systematic variation of problem
characteristics

DXC Benchmark

» DXC Synthetic Track

» Real-world logic circuits

» First 5 systems

» System specifies system description and components
» 20 scenarios per system

» Scenario specifies observations

» Different faulty components resulting in different
observations

» 100 runs per scenario to factor out random effects
» 5x20x 100 x 3 =30.000 runs

DXC Benchmarks

System | #C | #V | #F #D FHD
74182 | 21 | 28 |4-5| 30-300 139
74185 | 35 | 44 | 1-3 1-215 66.4
74283 | 38 | 45 |2-4]180-4,991 | 1,232.7
74181* | 67 | 79 |3-6| 10-3,828 | 877.8
c432* | 162196 |2-5| 1-6944 | 1,069.3
System | Abs. seq. LW-P F-P
[ms] S.[E.[S.[
74182 78 1 1.9510.49 | 1.78
741.85 209 | 2.00 [0.50 | 2.08
74283 152,835 | 1.52 | 0.38 | 2.32
74181%* 14,534 1 1.79 | 0.45 | 3.44
c432% 64,150 | 1.28 | 0.32 | 2.86

limited the search depth to their actual number of faults to ensure termination wi
e frame

CSPs

» Different CSPs, different characteristics
» Some can be solved in milliseconds
» Others need hours or days
» Find CSPs that are
» Different in their characteristics
» Can be solved in a reasonable time frame
» Not too simple
» Injected faults
» To remove solvability with respect to test cases

» Diagnosis task is to restore solvability

CSPs

Scenario #C | #V |#F | #D
aim-50-1-6-3 130 | 100| 5 | 12
c8 523 (239 8 | 4
costasArray-13 87 | 88 | 2| 2
domino-100-100 | 100 | 100| 3 | 81
e0ddr1-10-by-5-8 | 265 | 50 | 17| 15
fischer-1-1-fair 320 |343| 9 | 2006
graceful-K3-P2 60 | 15 |4 | 117
graph?2 22451400 | 14| 72
mknap-1-5 7 139 |1 2
primes-15-20-3-1 | 20 [100| 3 | 2
queens-8 28 | 8 |15 O
series-13 156 | 25|12 3

CSPs

Scenario Abs. seq.

[ms]
aim-50-1-6-3 5,245
c8 1,685
costasArray-13 7,367
domino-100-100 8,628
e0ddr1-10-by-5-8 5,875
fischer-1-1-fair 422.559
graceful-K3-P2 3,480
graph-2 94,398
mknap-1-5 383
primes-15-20-3-1 323
queens-38 4,824
series-13 7,432

Simulation

» Test effects of different characteristics on
parallelization improvements

» Simulation
» Artificial problem settings

Defined problem characteristics

>
» Randomly created problem instances
>

Whenever a new conflict should be determined,
system actively waits some time (Wt) and randomly
returns one of the conflicts

Simulation Results

#Cp, #Cf, | #D | Wt | Seq. LWP FP
|Ct| [ms| | [ms] Sy E4 S4 E,4
Varying computation times Wt
50, 5, 41 25 0 23 2.26 | 0.56 | 2.58 | 0.64
50, 5, 41 25 | 10 | 483 | 298 | 0.75 | 3.10 | 0.77
50, 5, 4 25 | 100 | 3,223 | 2.83 | 0.71 | 2.83 | 0.71

» Quite small diagnosis problem

» Wt = 0 shows time for tree construction itself

» Synchronization overhead of Full Parallelization

More Simulation Results

» Other results

» Larger conflicts — broader HS-Trees — better
parallelization

» More components — higher problem complexity —
narrower HS-Trees up to a certain level — smaller
parallelization improvements

» Adding more threads — even higher improvements,
but efficiency decreases

Computing multiple conflicts at once

» When constructing a new node, exactly one minimal
conflict is computed

» Pro:

» The new conflict is quickly visible and can be used by
parallel threads

» Con:
» Conflict search is re-started for each node
» Approach:

» New method (MergeXPlain) to compute more than one
conflict, in case they exist

» Effect:

» Slightly more effort for first nodes, but higher re-use
levels later on

Shchekotykhin, K., Jannach, D. and Schmitz, T.: "MergeXplain: Fast Computation of Multiple
Conflicts for Diagnosis". In: IJCAI 2015. Buenos Aires, Argentina, 2015, pp. 3221-3228

Evaluation

» Different technical implementations possible
» Compute all conflicts and then return
» Return to main thread after first conflict is found

» And compute more in a new background thread

» Results (MergeXPlain combined with
parallelization)

System | Seq.(QXP) | FP(QXP) | Seq.(MXP) | FP(MXP)
ms] | Sy | Ej4 ms] | Sy | E4
74182 12 | 1.26 | 0.32 10 | 1.52 | 0.38
T4L85 15 | 1.36 | 0.34 12 | 1.33 0.33
74283 49 | 1.58 | 0.39 35| 1.48 | 0.37
74181 699 | 1.99 | 0.55 394 | 2.10 0.53
c432 3,714 | 1.77 | 0.44 2,888 | 1.72 | 0.43

Parallelizing Depth-First Search

» Parallelizing a DFS procedure to find one diagnosis

» Go down the tree in a random manner in parallel
threads

» Remove redundant elements once a diagnosis is
found

e
{C1.C2, C3}

- L
-~ hs
C2 .~ -, C4
- - -
- .
- -
- Say
. ~
- -

A Hybrid DFS/BFS Strategy

» Which strategy works best depends on the specific
problem setting

@ Diagnosis detected :
\‘ z ¥ .r‘

i
.-"AY»

Dia:-_ﬁlsis detected

Results DFS/BFS Strategy

» Electronic circuits as an example
» Randomized DFS-strategy works better

System | Seq. FP RDFS PRDFS
[1115] 84 E4 [II]S] 84 E4
74182 16 | 1.37 | 0.34 9 084 | 0.21
T4L85 131 1.34 | 0.33 11| 1.06 | 0.27
74283 54 | 1.67 | 0.42 251 1.22 | 0.31
74181 691 | 2.08 | 0.52 741 1.23 | 0.31
c432 2,789 | 1.89 | 0.47 1,435 | 2.96 | 0.74

Direct Encodings

>

Assume a CSP with variables: al, a2, b1, b2, cl
Constraints are as follows
» X1:bl=al*2;X2:b2=a2*3;X3:cl=Dblxb2
» But X3 should have been: c1 = bl + b2

In a direct encoding, we add health state variables
for each constraint (the constraints are the
components), i.e., ab, ab, ab,

Updated constraints are

» X1:ab,v (bl=al*2); X2: ab, v (b2 a2 * 3);
X3: abs v (cl = bl * b2)

Add: ab, + ab, + ab; =1

Direct Encodings

» Very fast at finding one diagnosis

» All diagnosis can be obtained by incrementing the
expected diagnosis size stepwise

» Using parallel constraint reasoning implementation
of Gecode solver

Direct Encoding Results

» Finding one or all diagnosis

» Parallelization in both cases starts paying off for
more complex problems

» Might be even better if specifics of the solver are
taken into account

System Direct Encoding

Abs. [1'[15] Sg Eg 84 E4
74182 27 | 0.85] 042 | 0.79 | 0.20
T4L85 30 | 0.89 | 044 | 0.79 | 0.20
74283 32 | 0.85] 043 | 0.79 | 0.20
74181 200 | 1.04 | 0.52 | 1.15 | 0.29
c432 1,399 | 1.17 | 0.58 | 1.25 | 0.31

summary

>

Model-based Diagnosis as a general fault
detection/isolation method

Based on a simulation of the system to be
examined

Simulation (or problem itself) often a CSP

Our work shows that parallelizing the diagnostic
process leads to significant performance
iImprovements

» Multiple CSP problems solved in parallel

Parallelizing direct encodings also leads to
performance gains

Thank you for your attention

Contact: dietmar.jannach@tu-dortmund.de

References

» Jannach, D., Schmitz, T. and Shchekotykhin, K.: "Parallel
Model-Based Diagnosis on Multi-Core Computers". Journal
of Artificial Intelligence Research, Vol. 55. Al Access
Foundation, 2016, pp. 835-887

» Jannach, D. and Schmitz, T.: "Model-based diagnosis of
spreadsheet programs: a constraint-based debugging
approach". Automated Software Engineering, Vol. 23(1).
Springer Nature, 2014, pp. 105-144

» Shchekotykhin, K., Jannach, D. and Schmitz, T.:
"MergeXplain: Fast Computation of Multiple Conflicts for
Diagnosis". In: Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI 2015). Buenos
Aires, Argentina, 2015, pp. 3221-3228

» Jannach, D., Schmitz, T. and Shchekotykhin, K. M.:
"Parallelized Hitting Set Computation for Model-Based
Diagnosis". In: Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAl 2015). Austin, Texas, USA, 2015,
pp. 1503-1510

HS-Tree algorithm

Algorithm 1: DIAGNOSE: Main algorithm loop.
Input: A diagnosis problem (SD, Comps, OBs)
Result: The set A of diagnoses

1 A = (&; paths = (; conflicts = &;
2 nodesToExpand = (GENERATEROOTNODE(SD, Comps, OBS));
3 while nodesToEzpand # () do
1 newNodes = {);
node = head(nodesToExpand) ;
foreach ¢ € node.conflict do
|_ GENERATENODE(node, ¢, A, paths, conflicts, newNodes);

| nodesToExpand = tail(nodesToExpand) @ newNodes;
9 return A;

o =N & oo,

Expansion logic

Algorithm 2: GENERATENODE: Node generation logic.
Input: An existingNode to expand, a conflict element ¢ € Cowmps,
the sets A, paths, conflicts, newNodes

1 newPathLabel = existingNode.pathLabel U {c};
2 if (A le A : 1< newPathLabel) A cnECKANDADDPATH(paths, newPathLabel) then

3 node = new Node(newPathLabel);

4 if 3 S € conflicts : S n newPathLabel = 7§ then
5 node.conflict = S;

6 else

7 newConflicts = cueckConsistency(SD, Comps, OBs, node.pathLabel);
8 node.conflict = head(newConflicts);

9 if node.conflict # & then

10 newNodes = newNodes @ {(node);

11 conflicts = conflicts U newConflicts;

12 else

13 A=A v {node.pathLabel };

L evel-wise Parallelization

Algorithm 4: DIAGNOSELW: Level-Wise Parallelization.
Input: A diagnosis problem (SD, Comps, OBs)
Result: The set A of diagnoses

1 A = ; conflicts = (7J; paths = (7;
2 nodesToExpand = (GENERATEROOTNODE(SD, Cowmrs, OBS));
3 while nodesToEzpand #+ () do

1 newNodes = {);

5 foreach node € nodesToFEzpand do

6 foreach c € node.conflict do // Do computations in parallel
7 L L threads.execute(GENERATENODE(node, ¢, A, paths, conflicts, newNodes));
8 threads.await(); // Wait for current level to complete
9 | nodesTolxpand = newNodes; // Prepare next level

10 return A;

Full parallelization

Algorithm 5: DIAGNOSEFP: Full Parallelization.
Input: A diagnosis problem (SD, Comps, OBs)
Result: The set A of diagnoses

1 A = (J; paths = (J; conflicts = (;

2 nodesToExpand = {GENERATEROOTNODE(SD, Comps, OBS));

3 size = 1; lastSize = (;

1 while (size#lastSize) v (threads.active Threads# 0) do

5 for i =1 to size — lastSize do

6 node = nodesToExpand.get[lastSize + i;

7 foreach ¢ € node.conflict do

8 threads.execute(GENERATENODEFP(node, ¢, A, paths, conflicts,
\\ nodesToExpand));

9 lastSize = size;

10 | wait();

11 size = nodesToExpand.length();

12 return A;

Full-parallelization node expansion

Algorithm 6: GENERATENODEFP: Extended node generation logic.
Input: An eristingNode to expand, ¢ € Comps,
sets A, paths, conflicts, nodes ToEzpand

1 newPathLabel = existingNode.pathLabel u {c};

2 if (le A : 1< newPathLabel) A cHECKANDADDPATH(paths, newPathLabel) then
3 node = new Node(newPathLabel);

1 if 3 S € conflicts : S n newPathLabel = & then

5 node.conflict = S;

6 else

7 newConflicts = cueckConsisTENcY(SD, Comps, OBs, node.pathLabel);
8 | node.conflict = head(newConflicts);

9 synchronized

10 if node.conflict # & then

11 nodesToExpand = nodesToExpand @ (node);

12 conflicts = conflicts U newConlflicts;

13 else if § de A : d © newPathLabel then

14 A = A u {node.pathLabel};

15 for de A : d 2 newPathLabel do

16 |_ A=A\d,

17 notify();

	Parallel Model-based Diagnosis on Multi-Core Computers
	Introduction
	Model-based Diagnosis (MBD)
	General Principle of MBD
	Diagnosing Electronic Circuits
	Diagnosing Electronic Circuits
	Diagnosis Algorithms
	Reiter’s HS-Tree Algorithm
	Reiter’s Problem Formalization
	Where’s the constraint reasoning?
	Computational Complexity
	Level-wise parallelization
	Full parallelization
	Empirical Evaluation
	DXC Benchmark
	DXC Benchmarks
	CSPs
	CSPs
	CSPs
	Simulation
	Simulation Results
	More Simulation Results
	Computing multiple conflicts at once
	Evaluation
	Parallelizing Depth-First Search
	A Hybrid DFS/BFS Strategy
	Results DFS/BFS Strategy
	Direct Encodings
	Direct Encodings
	Direct Encoding Results
	Summary
	Foliennummer 32
	References
	HS-Tree algorithm
	Expansion logic
	Level-wise Parallelization
	Full parallelization
	Full-parallelization node expansion

