
Parallel Model-based Diagnosis
on Multi-Core Computers

Dietmar Jannach
TU Dortmund, Germany

dietmar.jannach@tu-dortmund.de

Invited Talk at PCR workshop at CADE 2017

Introduction

 Research interests
 Recommender Systems

 E-Commerce applications, business value of
recommenders

 Interactive advisory systems

 Artificial Intelligence
 Model-based Diagnosis, Constraints

 Software Engineering
 Debugging of Spreadsheets

 Drives this research (assuming a few cores)

 MBD for spreadsheets can be challenging

2

Model-based Diagnosis (MBD)

 A subfield of Artificial Intelligence

 Concerned with the automated and principled
analysis of why a system under observation does
not work as expected

 Based on an explicit model of a system’s behavior
when all of its components work correctly

 Originally designed for diagnosis of hardware
circuits

 But applied in many other domains later on, in
particular to software specifications:

 Knowledge-base debugging, diagnosis of workflow
definitions, VHDL and Java code, ontologies and
description logics, spreadsheets

3

General Principle of MBD

 Detect and analyze the behavioral discrepancy

 Systematically test hypothesis about possible
reasons for the discrepancy

4

Diagnosing Electronic Circuits

 Given the inputs and observed outputs below,
some components must be at fault

 The goal is to find possible (and parsimonious)
explanations for the observed outputs

5

1
0

1

0

1

Diagnosing Electronic Circuits

 Assuming “everything is broken” is one possible
explanation (diagnosis)

 But we are interested in minimal diagnosis

 A diagnosis is a subset of the system’s components
which, if assumed faulty, explain (or: are logically
consistent with) the observations

6

1
0

1

0

1

Diagnosis Algorithms

 A brute force algorithm
 Test all hypothesis regarding the

(two) possible states of each
components

 Means testing 2n combinations given
n components to find all explanations

 Each test involves a “simulation” of the system

 Reiter’s HS-Tree algorithm
 Based on the concept of “conflicts”

 Subsets of the components which cannot be assumed to
work correctly

 Conflicts guide the construction of a search tree
 Prunes the search space significantly
 Creates the diagnoses with increasing cardinality

7

Reiter’s HS-Tree Algorithm

8

 Example

 Conflicts:

 Not known in advance

 {C1, C2, C3}

 {C2, C4}
{C1, C2, C3}

C1
C2

C3

{C2, C4} {C2, C4}
C2 C4

C2 C4

 Diagnoses:
 {C2}
 {C1, C4}
 {C3, C4}

Reiter’s Problem Formalization

 Sets SD, COMPONENTS, OBS

 Can be encoded as sets of logical sentences

 Diagnosis problem: observation o ∈ OBS deviates
from expected system behavior

 Find diagnoses Δ ⊆ COMPONENTS that explain the
systems behavior, if the components of Δ are
assumed to be faulty

 Use HS-Tree algorithm to find minimal diagnoses

 Based on conflicts

 Conflict c ⊆ COMPONENTS is a set of components
that, if assumed to behave normally, are not
consistent with the observations

9

Where’s the constraint reasoning?

1. In many proposals constraint reasoning is used to
simulate the system behavior
 Own recent work – spreadsheet debugging

 Spreadsheets are translated into a CSP program

2. Alternative approach: “Direct Diagnosis”
 Don’t use conflicts but encode the fault states into

the simulation model

10

 Jannach, D. and Schmitz, T.: "Model-based diagnosis of spreadsheet programs:
a constraint-based debugging approach". Automated Software Engineering,
Vol. 23(1). Springer Nature, 2014, pp. 105-144

Computational Complexity

 Even if the conflicts were known in advance, the
problem is hard
 Reiter shows that the computation of the diagnoses

corresponds to the computation of the “hitting sets”
(cover set) of the conflict sets

 Which is known to be an NP-hard problem

 Computing one additional node in the pruned search
tree is costly as well
 It can involve solving a given Constraint Satisfaction

Problem multiple times

 Our main proposal therefore
 Parallelize Reiter’s tree search algorithm (and thus

implicitly the constraint reasoning process)

 For some reason nobody thought of this

 No parallel search in one CSP but many
parallel CSPs 11

Level-wise parallelization

 Construct nodes at one level in parallel

 Using thread pool of defined size

 Synchronize at end of each level

 Limited synchronization effort needed

 Sound and complete

12

C2C1

C2 C1

Jannach, D., Schmitz, T. and Shchekotykhin, K.: "Parallel Model-Based Diagnosis on
Multi-Core Computers". Journal of Artificial Intelligence Research,
Vol. 55. AI Access Foundation, 2016, pp. 835-887

Full parallelization

 Except root node, all nodes are processed in
parallel

 More synchronization required

 Supersets of diagnoses can be found

 When a diagnosis is found, supersets of this
diagnosis have to be removed

 Sound and complete

13

C2C1

C2

Diagnoses:
{C1, C2} {C2} …

Empirical Evaluation

 Tested different algorithm configurations on a
number of datasets

 DXC Benchmarks
 First 5 systems of 2011 DX Competition synthetic track,

encoded as CSP problems

 CSPs
 Selected CSPs of 2008 CSP Solver Competition, selected

CSP-encoded spreadsheets

 Ontologies
 Cannot be efficiently encoded as CSP problems

 Simulation
 Evaluation based on a systematic variation of problem

characteristics

14

DXC Benchmark

 DXC Synthetic Track

 Real-world logic circuits

 First 5 systems

 System specifies system description and components

 20 scenarios per system

 Scenario specifies observations

 Different faulty components resulting in different
observations

 100 runs per scenario to factor out random effects

 5 x 20 x 100 x 3 = 30.000 runs

15

DXC Benchmarks

16

* limited the search depth to their actual number of faults to ensure termination within reasonable
time frame

CSPs

 Different CSPs, different characteristics

 Some can be solved in milliseconds

 Others need hours or days

 Find CSPs that are

 Different in their characteristics

 Can be solved in a reasonable time frame

 Not too simple

 Injected faults

 To remove solvability with respect to test cases

 Diagnosis task is to restore solvability

17

CSPs

18

CSPs

19

Simulation

 Test effects of different characteristics on
parallelization improvements

 Simulation

 Artificial problem settings

 Defined problem characteristics

 Randomly created problem instances

 Whenever a new conflict should be determined,
system actively waits some time (Wt) and randomly
returns one of the conflicts

20

Simulation Results

 Quite small diagnosis problem

 Wt = 0 shows time for tree construction itself

 Synchronization overhead of Full Parallelization

21

More Simulation Results

 Other results

 Larger conflicts → broader HS-Trees → better
parallelization

 More components → higher problem complexity →
narrower HS-Trees up to a certain level → smaller
parallelization improvements

 Adding more threads → even higher improvements,
but efficiency decreases

22

Computing multiple conflicts at once

 When constructing a new node, exactly one minimal
conflict is computed

 Pro:
 The new conflict is quickly visible and can be used by

parallel threads

 Con:
 Conflict search is re-started for each node

 Approach:
 New method (MergeXPlain) to compute more than one

conflict, in case they exist

 Effect:
 Slightly more effort for first nodes, but higher re-use

levels later on

23

Shchekotykhin, K., Jannach, D. and Schmitz, T.: "MergeXplain: Fast Computation of Multiple
Conflicts for Diagnosis". In: IJCAI 2015. Buenos Aires, Argentina, 2015, pp. 3221-3228

Evaluation

 Different technical implementations possible

 Compute all conflicts and then return

 Return to main thread after first conflict is found

 And compute more in a new background thread

 Results (MergeXPlain combined with
parallelization)

24

Parallelizing Depth-First Search

 Parallelizing a DFS procedure to find one diagnosis

 Go down the tree in a random manner in parallel
threads

 Remove redundant elements once a diagnosis is
found

25

A Hybrid DFS/BFS Strategy

 Which strategy works best depends on the specific
problem setting

26

Results DFS/BFS Strategy

 Electronic circuits as an example

 Randomized DFS-strategy works better

27

Direct Encodings

 Assume a CSP with variables: a1, a2, b1, b2, c1

 Constraints are as follows

 X1 : b1 = a1 * 2; X2 : b2 = a2 * 3; X3 : c1 = b1 x b2

 But X3 should have been: c1 = b1 + b2

 In a direct encoding, we add health state variables
for each constraint (the constraints are the
components), i.e., ab1, ab2, ab3

 Updated constraints are

 X1: ab1 v (b1 = a1 * 2); X2: ab2 v (b2 a2 * 3);
X3: ab3 v (c1 = b1 * b2)

 Add: ab1 + ab2 + ab3 = 1

28

Direct Encodings

 Very fast at finding one diagnosis

 All diagnosis can be obtained by incrementing the
expected diagnosis size stepwise

 Using parallel constraint reasoning implementation
of Gecode solver

29

Direct Encoding Results

 Finding one or all diagnosis

 Parallelization in both cases starts paying off for
more complex problems

 Might be even better if specifics of the solver are
taken into account

30

Summary

 Model-based Diagnosis as a general fault
detection/isolation method

 Based on a simulation of the system to be
examined

 Simulation (or problem itself) often a CSP

 Our work shows that parallelizing the diagnostic
process leads to significant performance
improvements

 Multiple CSP problems solved in parallel

 Parallelizing direct encodings also leads to
performance gains

31

Thank you for your attention

Contact: dietmar.jannach@tu-dortmund.de

32

References
 Jannach, D., Schmitz, T. and Shchekotykhin, K.: "Parallel

Model-Based Diagnosis on Multi-Core Computers". Journal
of Artificial Intelligence Research, Vol. 55. AI Access
Foundation, 2016, pp. 835-887

 Jannach, D. and Schmitz, T.: "Model-based diagnosis of
spreadsheet programs: a constraint-based debugging
approach". Automated Software Engineering, Vol. 23(1).
Springer Nature, 2014, pp. 105-144

 Shchekotykhin, K., Jannach, D. and Schmitz, T.:
"MergeXplain: Fast Computation of Multiple Conflicts for
Diagnosis". In: Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI 2015). Buenos
Aires, Argentina, 2015, pp. 3221-3228

 Jannach, D., Schmitz, T. and Shchekotykhin, K. M.:
"Parallelized Hitting Set Computation for Model-Based
Diagnosis". In: Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI 2015). Austin, Texas, USA, 2015,
pp. 1503-1510

33

HS-Tree algorithm

34

Expansion logic

35

Level-wise Parallelization

36

Full parallelization

37

Full-parallelization node expansion

38

	Parallel Model-based Diagnosis on Multi-Core Computers
	Introduction
	Model-based Diagnosis (MBD)
	General Principle of MBD
	Diagnosing Electronic Circuits
	Diagnosing Electronic Circuits
	Diagnosis Algorithms
	Reiter’s HS-Tree Algorithm
	Reiter’s Problem Formalization
	Where’s the constraint reasoning?
	Computational Complexity
	Level-wise parallelization
	Full parallelization
	Empirical Evaluation
	DXC Benchmark
	DXC Benchmarks
	CSPs
	CSPs
	CSPs
	Simulation
	Simulation Results
	More Simulation Results
	Computing multiple conflicts at once
	Evaluation
	Parallelizing Depth-First Search
	A Hybrid DFS/BFS Strategy
	Results DFS/BFS Strategy
	Direct Encodings
	Direct Encodings
	Direct Encoding Results
	Summary
	Foliennummer 32
	References
	HS-Tree algorithm
	Expansion logic
	Level-wise Parallelization
	Full parallelization
	Full-parallelization node expansion

